Performance Comparison of Dual Connectivity and Hard Handover for LTE-5G Tight Integration in mmWave Cellular Networks
نویسنده
چکیده
MmWave communications are expected to play a major role in the Fifth generation of mobile networks. They offer a potential multi-gigabit throughput and an ultra-low radio latency, but at the same time suffer from high isotropic pathloss, and a coverage area much smaller than the one of LTE macrocells. In order to address these issues, highly directional beamforming and a very high-density deployment of mmWave base stations were proposed. This Thesis aims to improve the reliability and performance of the 5G network by studying its tight and seamless integration with the current LTE cellular network. In particular, the LTE base stations can provide a coverage layer for 5G mobile terminals, because they operate on microWave frequencies, which are less sensitive to blockage and have a lower pathloss. This Thesis will propose an LTE-5G tight integration architecture, based on mobile terminals’ dual connectivity to LTE and 5G radio access networks, and will evaluate which are the new network procedures that will be needed to support it. Moreover, this new architecture will be implemented in the ns–3 simulator, and a thorough simulation campaign will be conducted in order to evaluate its performance, with respect to the baseline of handover between LTE and 5G.
منابع مشابه
Performance Comparison of Dual Connectivity and Hard Handover for LTE-5G Tight Integration
Communications at frequencies above 10 GHz (the mmWave band) are expected to play a major role for the next generation of cellular networks (5G), because of the potential multi-gigabit, ultra-low latency performance of this technology. mmWave frequencies however suffer from very high isotropic pathloss, which may result in cells with a much smaller coverage area than current LTE macrocells. Hig...
متن کاملIntegration of Carrier Aggregation and Dual Connectivity for the ns-3 mmWave Module
Thanks to the wide availability of bandwidth, the millimeter wave (mmWave) frequencies will provide very high data rates to mobile users in next generation 5G cellular networks. However, mmWave links su er from high isotropic pathloss and blockage from common materials, and are subject to an intermittent channel quality. Therefore, protocols and solutions at di erent layers in the cellular netw...
متن کاملGSLHA: Group-based Secure Lightweight Handover Authentication Protocol for M2M Communication
Machine to machine (M2M) communication, which is also known as machine type communication (MTC), is one of the most fascinating parts of mobile communication technology and also an important practical application of the Internet of Things. The main objective of this type of communication, is handling massive heterogeneous devices with low network overheads and high security guarantees. Hence, v...
متن کاملA Framework for Cross-Layer Evaluation of 5G mmWave Cellular Networks in ns-3
The growing demand for ubiquitous mobile data services along with the scarcity of spectrum in the sub-6 GHz bands has given rise to the recent interest in developing wireless systems that can exploit the large amount of spectrum available in the millimeter wave (mmWave) frequency range. Due to its potential for multi-gigabit and ultra-low latency links, mmWave technology is expected to play a c...
متن کاملAn Efficient Uplink Multi-Connectivity Scheme for 5G mmWave Control Plane Applications
The millimeter wave (mmWave) frequencies offer the potential of orders of magnitude increases in capacity for next-generation cellular systems. However, links in mmWave networks are susceptible to blockage and may suffer from rapid variations in quality. Connectivity to multiple cells – in the mmWave and in the traditional frequencies – is considered essential for robust connectivity. One of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1607.04330 شماره
صفحات -
تاریخ انتشار 2016